

More Precision

Edge Sensor for mirror segments

The Edge Sensor has specifically been developed for the measurement of mirror segments for large telescopes. In order to enable a highly precise positioning of the individual segments, the Edge Sensor detects quantities such as piston, gap and shear in nanometre resolution. The active temperature compensation reduces temperature-driven disturbances to a minimum.

Model	Piston fine	Piston coars	Gap	Shear
Measuring range	\pm 400 μ m	± 1400µm	2000µm - 7000µm	± 1500µm
Resolution	< 0.5nm	< 10nm	< 100nm	< 100nm
Linearity	dPiston measured/dPiston real = 1 \pm 1% for relative movements \leq 1 μ m	dPiston measured/dPiston real = $1 \pm 10\%$	$<$ 1% for movements \leq 1000 μ m	$<$ 1% for movements \leq 1000 μ m
Noise	≤ 1nm/sqrt(Hz) from 1-100Hz	≤ 100nm/sqrt(Hz) from 1-10Hz	≤ 100nm/sqrt(Hz) from 1-10Hz	\leq 100nm/sqrt(Hz) from 1-10Hz
Sampling rate	\geq 500Hz	\geq 500Hz	\geq 50Hz	≥ 50Hz
Compensated temperature stability	≤ 5nm/K	≤ 50nm/K	≤ 500nm/K	\leq 500nm/K
Dependence of air humidity	\leq 10nm/ 50% RH	≤ 100nm/ 50% RH	\leq 1 μ m/ 50% RH	\leq 1 μ m/ 50% RH
Long-term stability (drift) at constant temperature and air humidity	≤ 10nm/week	≤ 100nm/week	$\leq 1\mu$ m/week	$\leq 1\mu$ m/week

Micro-Epsilon

info@micro-epsilon.com www.micro-epsilon.com

info@micro-epsilon.co.uk www.micro-epsilon.co.uk